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Abstract

The consistent increase in the incidence of diabetes and its complications represents an obsession of health care providers 
worldwide. Diabetic nephropathy is responsible for nearly half of the chronic kidney diseases. The morbidity and mortality 
rates of diabetes patients admitted to dialysis is much higher than non-diabetic cases. These facts are behind the tremen-
dous efforts undertaken to understand the pathogenesis and therapeutic modalities of this disease. Over the last four 
years, a plethora of data has evolved to revive the hope not only to slow the rate of progression of this disease but possibly 
to prevent its evolution. In this review, we are going to discuss the most relevant and novel pathogenic mechanisms of 
diabetic nephropathy and the most suitable approach to prevent its development.
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INTRODUCTION
In 2014, diabetes mellitus was diagnosed in 430 mil-
lion people worldwide, compared with 108 million in 
1980 (1). The most common cause of end-stage renal 
disease (ESRD) is diabetes. One-third of patients with 
type 1 diabetes mellitus (T1DM) develop ESRD, where-
as only 10%-20% with type 2 diabetes mellitus (T2DM) 
progress to ESRD (2, 3). The evolution of diabetic ne-
phropathy (DN) is responsible for a six-fold increase in 
the overall 10-year mortality among diabetes patients 
compared with healthy age matched non-diabetic 
individuals (4). Endothelial dysfunction is a common 
underlying pathogenic mechanism of diabetic com-
plications (5). Endothelial dysfunction is a sequel to 
many metabolic changes encountered in patients with 
hyperglycemia. These metabolic changes include in-
creased oxidative stress (6), hyperuricemia (7), stim-
ulation of sodium hydrogen exchangers (NHE) (5), 
and stimulation of renal sodium glucose transporters 
(SGLT) (8). 

During the last 16 years, three novel hypoglycemic groups 
were introduced to improve glycemic control in patients 
with T2DM, namely glucagon-like peptide-1 receptor ag-
onists (GLP-1RA), dipeptidyl peptidase 4 inhibitors (DP-
P4Is), and sodium glucose co-transporter-2 inhibitors 
(SGLT2Is). These three groups carry unique features, 
namely a minimal chance to develop significant hypo-
glycemia and a neutral effect on body weight in case of 
DPP4Is and body weight reduction in case of GLP-1RA and 
SGLT2Is (9, 10). Compared to older hypoglycemic agents, 
these newer groups carry potential favorable protective 
effects on endothelium and can significantly reduce ad-
verse cardiovascular events and are renoprotective. SGL-
T2Is may also prevent or hamper diabetic retinal compli-
cations (11). Few months ago, DECLARE-TIMI 58 trial has 
shown that treatment with the SGLT2I dapagliflozin for 
median duration of 4.2 years was associated with signif-
icant reduction in the chance to develop renal end points 
even among patients with normal glomerular filtration 
rate (GFR) and normal urine protein excretion (12). In this 
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review of literature, we are going to demonstrate how it is feasi-
ble to abort the development of DN.

Evolution of Diabetic Nephropathy
Renal hyperfunction and hypertrophy represents the earliest 
stage of DN (13). Persistent increase in urine albumin excretion 
(UAE) develops a few years later when UAE becomes more than 
30 mg/day, more than 20 μg/minute, or albumin-creatinine ra-
tio (ACR) more than 30 mg/g of creatinine. When patients de-
velop these features, they are considered to be in stage 3 DN 
that is also called the stage of incipient nephropathy. Initially, 
persistent increase in UAE is associated with increased GFR. 
Later on, GFR consistently declines and becomes pronounced 
with the continuous increase of UAE above 300 mg/day, 200 μg/
minute, or when ACR exceeds 300 mg/g (Figure 1) (14). These 
renal changes are usually associated with progressive increase 
in blood pressure. Keen et al. (15) first described increased UAE 
in the early sixties of the twentieth century. Twenty years later, 
the term “microalbuminuria” became popular after the results 
of a 14-year longitudinal study showed microalbuminuria as a 
predictor of renal disease and mortality in T1DM (16). Similar re-

sults were also reported in T2DM (17). These observations led to 
the use of renin-angiotensin system (RAS) blockers in patients 
with incipient nephropathy (18, 19). However, the predictive 
significance of microalbuminuria was not confirmed by later 
studies (20, 21). Furthermore, progression of microalbuminuria 
to overt proteinuria was not observed in one-third of patients 
with T1DM that develop advanced renal disease (22). These 
observations then led to the reluctance to use RAS blockers in 
incipient nephropathy and to restrict their use to patients with 
overt nephropathy (23).

The Endothelium
The role of the endothelium as a regulator of the local vascular 
tone was first highlighted in 1980 (24). Endothelial dysfunction 
is an eminent feature in diabetes patients and in patients suffer-
ing from obesity or metabolic syndrome. Decreased synthesis 
of nitric oxide (NO), also known as endothelial derived relaxing 
factor (EDRF), is the salient feature of endothelial dysfunction. 
By decreasing insulin access to target cells, decreased NO un-
derlies insulin resistance (25). Insulin also crosses the endothe-
lial cells to reach the target cells (26, 27). Hyperglycemia leads to 
increased production of reactive oxygen species (ROS) in many 
cells including endothelium (28). Increased endothelial ROS is 
associated with increased breakdown of NO (29). Endothelial 
dysfunction is associated with development and progression 
of nephropathy (30) (Figure 2). In two separate studies, endo-
thelial nitric-oxide synthase (eNOS) deficient mice consistently 
developed diabetic nephropathy (31, 32). 

Sodium Hydrogen Exchangers
The sodium hydrogen exchangers (NHE) are responsible for 
intracellular pH regulation. NHE exist in nine isoforms (33, 34). 
NHE1 is encountered on the surface of endothelial cells, vascu-
lar smooth muscle cells (VSMCs), cardiomyocytes, and platelets, 
whereas NHE3 is encountered on renal tubular and intestinal 
epithelium. Activation of the NHE1 within endothelium, VSMCs, 
and cardiomyocytes may underlie microvascular and macro-
vascular complications of diabetes. It can also have a role in in-
sulin resistance and systemic hypertension. These exchangers 
cause increased sodium influx that stimulates sodium-calcium 

Main Points 

• This review was written to emphasize the importance of use 
of SGLT2 inhibitors, DPP4 inhibitors and GLP1 receptor ago-
nist to prevent the development of diabetic nephropathy in 
both type 1 and type 2 diabetes mellitus.

• The patients of both types of diabetes that are prone to de-
velop diabetic nephropathy can be suspected using serum 
mannose binding lectin, serum adiponectin and serum fi-
brinogen levels as very early predictors.

• The patients suspected to develop diabetic nephropathy ac-
cording to these tests should start using SGLTIs. In order to 
get the maximum benefit, at least a small dose of either an 
ACEI or ARB should be added.

• In patients of type 2 diabetes not well controlled by Met-
formin and the maximum dose of SGLT2I, sequential addi-
tion of DPP4I and GLP1RA would improve glycemic control 
and reinforce the preventive action of SGLT2I-RAS blocker 
combination. 

Figure 1. Stages of diabetic nephropathy. Stage 2 is characterized by the progressive increase in mesangial deposits on light microscopy without correspond-
ing clinical or laboratory findings; ESRD: end stage renal disease when eGFR≤15 mL/min./1.73 m2.
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exchanger with consequent increase of intracellular calcium. 
Within endothelium, increased cytoplasmic calcium inhibits 
eNOS and thus decreases NO synthesis (Figure 3, 4). Increased 
intracellular calcium is also associated with increased intracel-
lular and mitochondrial activity of calpain, the cysteine pro-
tease that can damage the inner mitochondrial membrane, a 
process that ends with cell apoptosis (35). Inhibition of endo-
thelial NHE1 using cariporide increased eNOS activity and NO 
release. Enhancement of eNOS activity simultaneously inhibit-
ed ROS production, nuclear factor- κB (NF-κB) activation, and 
tumor necrosis factor-α and intercellular adhesion molecule-1 
production (36). Within the myocardium, increased cellular 
calcium induced by NHE1 leads to cardiac hypertrophy. Pe-
ripheral coronary ischemia consequent to endothelial dysfunc-
tion can further activate cardiac NHE1. Increased intracellular 
calcium stimulates calpain enzyme activity within cardiomyo-
cytes leading to degeneration, apoptosis, and fibrosis of myo-
cardium (5) (Figure 4). Proximal convoluted tubular (PCT) and 
ascending loop of Henle have NHE3. When NHE3 is activated, 
excess sodium retention occurs and contributes to systemic 
hypertension in diabetes patients (5, 37) (Figure 5). NHE1 plays 
a significant role in platelet activation. This effect is mediated 
through increased intracellular calcium and can contribute to 
the pro-coagulant state in diabetes (38). Accordingly, it seems 
that activation of NHE1 and NHE3 plays a distinguished role in 
the pathogenesis of heart failure and ESRD in patients with di-
abetes and that inhibition of these exchangers might have an 
important influence in their management.

Oxidative Stress
Increased oxidative stress is one of the metabolic disorders en-
countered in diabetes. Diabetes patients overproduce free oxy-
gen radicals. Increased production of free oxygen radicals is the 
sequel to increased activity of nicotinamide adenine dinucleo-
tide phosphate (NADPH) oxidase (39, 40), cyclo-oxygenase (41), 
and lipoxygenase (42) enzymes in response to hyperglycemia. 
Proximal convoluted tubular epithelium (PCT) has SGLT2 within 
its brush border. SGLT2 is another pathway for overproduction 
of free oxygen radicals. Increased intracellular concentration 
of uric acid (UA) induces NADPH oxidase (43). Mitochondrial 
damage results in impaired antioxidant defense (44). Increased 
free oxygen radicals activate NF-κB (45). Translocation of NF-κB 
from the cytoplasm to the nucleus occurs when it gets rid of its 
inhibitor. Within the nucleus, NF-κB triggers the genes encoding 
transforming growth factor-β1 (TGF-β1), monocyte chemoat-
tractant protein-1 (MCP-1), and intercellular adhesion molecule 
1 (ICAM1) (46-48). ROS stimulates overproduction of protein ki-
nase C (PKC) and mitogen-activated protein (MAP) kinase with-
in mesangial cells (MCs) and pericytes with consequent over-
production of extracellular matrix proteins (49).

Uric Acid
High serum UA is indicated as a strong predictor for proteinuria 
in T1DM patients. The risk for development of proteinuria in-
creases by 80% with every 1 mg/dL increase in UA (50). There is 

Figure 2. Consequences of endothelial dysfunction.
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Figure 3. Diabetic state increases the activity of the sodium/hydrogen ex-
changer on the surface of endothelial cells, vascular smooth muscle cells, 
cardiomyocytes, and tubular epithelial cells. Consequently, intracellular and 
mitochondrial calcium increases.
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a 2.4-fold risk of decline of GFR in T1DM patients with serum UA 
>6.6 mg/dL when compared with patients with lower UA level 
(51). When T1DM patients were followed up for more than 18 
years, UA was an independent predictor of overt proteinuria 
(52); 68% of the hyperuricemic T2DM patients versus 41.5% 
with normal UA had DN (53). The increased risk for the develop-
ment of albuminuria and accelerated decline of GFR in hyper-
uricemic T2DM patients is confirmed by two prospective studies 
(54, 55). In T2DM patients that have the disease for 15 years or 
more, UA >7 mg/dL in males and >6 mg/dL in females is associ-
ated with a higher rate of DN progression and overall mortality 
(56). Treatment of T2DM patients suffering from DN and high 
serum UA with allopurinol decreased UAE and serum creatinine 
significantly and significantly increased GFR over three years of 
follow-up (57). In a meta-analysis of 19 randomized controlled 
trials enrolling 992 patients, the significant favorable effect 
of urate-lowering therapy on the rate of GFR decline was con-
firmed (58). 

Increased level of UA is associated with endothelial dysfunc-
tion. In a recent in vitro study, high UA concentration inhibited 
eNOS expression and NO production in human umbilical vein 
endothelial cells (HUVECs), activated NF-κB, and increased the 
level of inflammatory cytokines (59). High UA significantly pre-
dicts systemic hypertension (60).

Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1RA)
Glucagon-like peptide-1 (GLP-1) is a polypeptide hormone. 
Small intestinal mucosal neuro-endocrine cells secrete GLP-1 to 
activate pancreatic insulin secretion, inhibit glucagon secretion 
by pancreatic α cells, slow gastric emptying, and control appe-
tite (61). Dipeptidyl peptidase-4 enzyme breakdown of GLP-1 is 
responsible for the very short plasma half-life of this hormone. 

Continuous intravenous infusion is thus needed if this agent 
is used therapeutically (62). GLP-1RA are exogenous GLP-1 an-
alogues with variable sequence similarity to the human GLP-1 
(63). This variability involves mainly two sites in the GLP-1 mole-
cule susceptible to cleavage by DPP4; namely, alanine and lysine 
at positions 8 and 34 respectively. These changes, beside other 
modifications, have helped to discover many peptides that sim-
ulate GLP-1 action but with longer half-life (62). GLP-1RAs can 
control blood sugar and decrease body weight without increas-
ing the risk of hypoglycemia (64). GLP-1RAs can lower systolic, 
and to a minor degree, diastolic blood pressure (65). In the Lira-
glutide Effect and Action in Diabetes: Evaluation of Cardiovascu-
lar Outcome Results (LEADER) trial, liraglutide use significantly 
decreased mortality from any cause and cardiovascular events 
in patients with T2DM at high risk for cardiovascular events. 
This benefit is more pronounced in patients with eGFR <60 mL/
min/1.73 m2 and in patients 50 years or more. The chance of de-
velopment of diabetic nephropathy was significantly lower in 
patients treated with liraglutide (66). Similarly, SUSTAIN-6 trial 
showed a significant decrease in the incidence and progression 
of nephropathy in T2DM patients using semaglutide. However, 
a higher percentage of patients in the semaglutide group devel-
oped retinopathy. Semaglutide was also associated with a 26% 
reduction in the hazard of cardiovascular mortality, nonfatal 
myocardial infarction, or nonfatal stroke (67).

GLP-1RAs can promote natriuresis and diuresis through inhibi-
tion of renal NHE3. Additional effects include inhibition of the 
intrarenal renin-angiotensin system, inflammation, and apop-
tosis. These effects might be related to the antioxidant and an-
ti-apoptotic activities of GLP-1RAs (68) (Figure 6).

A major drawback of GLP-1RA is the need for frequent injec-
tions. Recently, oral semaglutide proved to be as efficacious as 
parenteral formula in glycemic and body weight control (69). 
However, the cardiovascular and renal effects of this oral for-
mula are not yet established.

Role of Dipeptidyl Peptidase 4 (DPP4) Inhibitors
The non-enzymatic functions for DPP4 within the kidney at-
tracted attention for the renoprotective action of DPP4Is espe-
cially after reporting the anti-proteinuric effect of saxagliptin in 
T2DM patients in the “Saxagliptin Assessment of Vascular Out-
comes Recorded in Patients with Diabetes Mellitus-Thrombol-
ysis in Myocardial Infarction 53” (SAVOR-TIMI 53) trial (70, 71). 
In addition, animal models of acute and chronic kidney disease 
have demonstrated that pharmacologic and genetic inhibition 
of DPP4 can prevent progressive renal damage (72, 73).

DPP4Is inhibit the breakdown of endogenous GLP and glu-
cose-dependent insulinotropic peptide (GIP) and hence im-
prove the response of pancreatic β cells to glucose (74). 

Within the kidney, DPP4 exists on the surface of S1-S3 segments 
of the PCT and plays a role in salt and water retention through 

Figure 5. Increased activity of NHE3 isomer within the proximal convoluted 
tubules increases sodium absorption from the lumen of these tubules in ex-
change with the secreted hydrogen. Decreased sodium delivery to the distal 
nephron segments results in glomerular hyperfiltration. Diabetic state and insu-
lin administration increase NHE3 activity while SGLT2Is and GLP1RAs inhibit it. 
NHE: sodium hydrogen exchanger; SGLT2Is: sodium glucose transporter-2 inhibitors; 
GLP1RAs: glucagon like peptide receptor agonists
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stimulation of NHE3 (75). Angiotensin II inhibits megalin recep-
tor and thus can increase proteinuria. This process is reversed 
by DPP4Is (76). Treatment with DPP4Is thus reverse reduced 
uptake of albumin and other low molecular weight proteins by 
PCT (77). DPP4 was also discovered on the glomerular endothe-
lium and the base of the foot processes of podocytes (78). DPP4 
is expressed on T-cells, B-cells, macrophages, and dendritic 
cells in the kidney (79). Stimulation of DPP4 on the surface of 
different immune and inflammatory cells is claimed to induce 
inflammation within the diabetic kidney and DPP4Is can de-
crease this inflammation (80).

The anti-proteinuric effect DPP4Is in T2DM patients was ob-
served in three randomized controlled studies. In all these tri-
als, urine protein excretion was not a prespecified end point. 

Moreover, DPP4Is failed to have a significant impact on dou-
bling of serum creatinine, change in GFR, or ESRD in any of 
these trials (81-83). In contrast, MARLINA-T2D trial that specifi-
cally looked for the anti-proteinuric effect of linagliptin failed to 
find any significant impact (84) contrary to a previous trial done 
by the same authors who demonstrated that the co-administra-
tion of linagliptin to T2DM patients that had renal dysfunction 
and were prescribed angiotensin converting enzyme inhibitor 
(ACEI) or angiotensin receptor blocker (ARB) has led to additive 
significant reduction in albuminuria (85). 

In normal situations, microRNA-29 (miR29) suppresses DPP4 
gene. In diabetic state, this suppression is lost. As a conse-
quence, DPP4 activity increases (86). In diabetic mice, activated 
endothelial DPP4 induces phosphorylation of adjacent integ-
rin β1 on the surface of the endothelium. The activated DPP4, 
together with the phosphorylated integrin β1, form a complex 
that up-regulates TGF β receptor and activates the surface 
vascular endothelial growth factor receptor type 1(VEGFR1). 
Upregulated TGF β receptor and VEGFR1 stimulate endotheli-
al-mesenchymal transition (EndMT) that increases transition to 
fibroblasts with subsequent increased fibrogenesis (87) (Figure 
7). However, human studies performed so far cast doubts on 
their anti-fibrosis impact in humans.

The effect of DPP4Is treatment on the retina is debatable. While 
some investigators reported an increase in retinal endothelial 
leakage and vascularity (88), others have reported a significant 
reduction in the risk of diabetic retinopathy progression (89). 

The potentiation of the stem cell chemokine, stromal cell-de-
rived factor-1 (SDF-1) by DDP4Is can partially explain the lack 
of the expected favorable effect of these agents on the diabet-
ic microvascular and macrovascular complications in spite of 
proven molecular and experimental mechanisms. SDF-1 pro-
motes inflammation, proliferation and neovascularization (90). 
It can also enhance atheromatous plaque growth and instabili-
ty, cardiac inflammation, and fibrosis (91). Potentiation of SDF-
1 within the renal tissue leads to podocyte injury and glomeru-
losclerosis. SDF-1 also induces natriuresis in the distal tubules, 
contrary to SGLT2Is and NHE3 inhibitors that act on PCT. The 
adverse effects of SDF-1 on the kidney would muffle the exper-
imental favorable effects of DPP4Is observed in animal studies 
and can explain the need of co-administration of RAS blockers 
to gain the additive anti-proteinuric effect of DPP4Is (90, 92) 
(Figure 8). 

Role of Sodium Glucose Co-Transporters Inhibitors (SGLT2Is)
SGLT2Is constitute the most recently introduced group that 
is insulin independent. Three members of this group, namely 
empagliflozin, canagliflozin, and dapagliflozin are now used 
worldwide after the food and drug administration (FDA) ap-
proval. They inhibit the upregulated SGLT2 co-transporters 
of the PCT S1 segment brush border, and thus reduce the re-
nal threshold for plasma glucose from 196 to 22 mg/dL and 

Figure 6. Hyperglycemia stimulates NADPH oxidase enzyme within different 
organs including the kidney. Consequent increased production of free oxygen 
radicals results in increased cascade of degenerative and inflammatory pro-
cesses that underlie pathology of the diabetic kidney. Glucagon like peptides 
inhibit NADPH oxidase and thus can muffle development or progression of di-
abetic nephropathy.  
GLP1: glucagon like peptides; NADPH: nicotinamide adenine phosphate; ROS: reactive oxy-
gen species; NF-κB: nuclear factor kappa B; MCP1: macrophage chemoattractant fpeptide; 
VSMCs: vascular smooth muscle cells; ATP: adenosine triphosphate; RAS: renin-angiotensin 
system; EMT: epithelial mesenchymal transition
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Figure 7. MicroRNA-29 is a natural inhibitor of endothelial DPP-4 within renal 
vasculature. Hyperglycemia inhibits microRNA-29 and thus stimulates endothe-
lial DPP-4.  
DPP-4: dipeptidyl peptidase; TGF: transforming growth factor; EndMT: endothelial mesen-
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enhance the urinary excretion of glucose (93). Inhibition of 
PCT absorption of sodium is attributed to inhibition of SGLT2 
and NHE3 within PCT and NHE within the loop of Henle. This 
leads to increase in distal sodium delivery and distal tubular 
sodium absorption. Increased adenosine triphosphate (ATP) 
consumption during sodium absorption causes increase of 
adenosine production. Afferent arteriolar vasoconstriction 
consequent to excess adenosine leads to a fall in renal blood 
flow, reversal of hyperfiltration, and reduces renal injury (Fig-
ure 9). SGLT2Is exert additional beneficial effects, including 
body weight reduction, decrease of UA, and blood pressure 
(94). GLUT9 within the S3 segment of the PCT is a surface urate 
transporter that is triggered by excess glucose to excrete UA 

in exchange with glucose (95). The antihypertensive effect of 
SGLT2Is is mediated by volume depletion, loss of body weight, 
inhibition of endothelial NHE1 and renal NHE3, and reduction 
in serum UA (60).

SGLT2Is can also decrease PCT intracellular fructose metabo-
lism and UA synthesis (96). Contrary to extracellular UA, intra-
cellular UA is pro-oxidant. It stimulates NADPH oxidase enzyme 
activity and increases ROS production. Excess free oxygen 
radicals within tubular cells leads to premature senescence of 
these cells, activation of the renin-angiotensin system, epitheli-
al-mesenchymal transition, and activation of NF-κB (97-99) (Fig-
ure 6). Cyclin-dependent kinase (CDK) inhibits cell senescence. 
P21 is an inhibitor of CDK and thus promotes cell senescence. 
Hyperglycemia induces P21, whereas SGLT2Is inhibit this factor 
within PCT cells (100, 101) (Figure 10). SGLT2Is can dampen the 
renal parenchymal Toll-like receptor-4 expression, the binding 
of activator protein 1 to nuclear DNA, prohibit increased colla-
gen IV expression as well as interleukin-6 secretion, and macro-
phage infiltration to the interstitium induced by hyperglycemia 
(102). Moreover, SGLT2Is suppress the fibrotic and inflammato-
ry genes within the diabetic kidney (103, 104).

By suppressing the intracellular UA production, SGLT2Is can 
inhibit renal gluconeogenesis. UA induces adenosine mono-
phosphate dehydrogenase (AMPD) enzyme and suppresses 
adenosine monophosphate kinase (AMPK) enzyme activities. 
Intracellular AMPD stimulates, whereas AMPK inhibits, glucone-
ogenesis (105). In healthy individuals, the kidneys participate in 
endogenous glucose production. In the fasting state, 20%-25% 
of endogenous glucose production takes place through renal 
gluconeogenesis. In T2DM, renal gluconeogenesis increases 
three-fold (106). 

In EMPA-REG study, empagliflozin achieved 55% reduction in 
the incidence of ESRD in T2DM patients with established car-
diovascular disease having eGFR >30 mL/min/1.73m2 over a 
median duration of 3.1 years (107). In RENAAL trial, losartan 
treatment of a similar population having DN led to a 28% delay 
in the onset of ESRD over a mean follow-up of 3.4 years (108). 
In addition, empagliflozin caused a 39% reduction of incident 
or worsening nephropathy, a 38% reduction in progression to 
overt albuminuria, and a 44% reduction in doubling of serum 
creatinine (109). The favorable outcome of SGLT2Is is attribut-
able to their effect on glomerular hyperfiltration, blood pres-
sure, body weight, and serum UA in diabetic patients (109-111). 
SGLT2Is also inhibit NHEs on the surface of cardiomyocytes, en-
dothelial cells, and renal tubular epithelial cells. NHE inhibition 
can explain the distinguished cardioprotective and renoprotec-
tive actions of SGLT2Is (112-114). Decreased renal blood flow in-
duced by SGLT2Is is related to tubuloglomerular feedback and 
not related to the RAS blockade. Empagliflozin and dapaglifloz-
in increase plasma aldosterone and angiotensin II (115, 116), to-
gether with increased activity of urinary angiotensin converting 
enzyme and angiotensin converting enzyme2 (117). 

Figure 8. The beneficial effects of DPP4Is on the kidney are muffled by the bad 
effect induced by stromal cells derived factor 1(SDF-1). 
DPP-4: dipeptidyl peptidase; TGF: transforming growth factor; EndMT: endothelial mesen-
chymal transition
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Figure 9. Mechanism of hyperfitration induced by hyperglycemia and how do 
SGLT2Is control it.  
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When T2DM patients (total of 1,450 cases) already on metformin 
were treated for 2 years with either once-daily canagliflozin 100 
mg, canagliflozin 300 mg, or glimepiride titrated to 6-8 mg, the 
eGFR declined by 0.5, 0.9, and 3.3 mL/min/1.73 m2/year respec-
tively (p<0.01 for each canagliflozin group versus glimepiride) in 
spite of comparable reductions in HbA1c. Compared to glime-
piride, UAE declined more with canagliflozin 100 mg or canagli-
flozin 300 mg. These results reinforce the renoprotective effect 
of SGLT2Is independent of their glycemic effect (118). Contrary 
to DPP4Is and sulfonylureas that are significantly associated 
with increased risk of diabetic retinopathy, SGLT2Is were not 
associated with a higher risk of diabetic retinopathy than pla-
cebo among 100,928 patients with T2DM included in 37 inde-
pendent randomized controlled trials with 1,806 diabetic reti-
nopathy events (119). Canagliflozin Cardiovascular Assessment 
Study (CANVAS) recruited 10 142 T2DM patients. These patients 
were assigned to either canagliflozin 100 mg daily, canagliflozin 
300 mg daily or placebo in 1:1:1 ratio. 34% of the patients had 
≥2 risk factors for cardiovascular events but had no history of 
previous cardiovascular event (primary prevention cohort), 
whereas the remaining 66% had a positive history of cardiovas-
cular event (secondary prevention cohort). After treatment for a 
mean of 3.6 years, the primary endpoint (cardiovascular death, 
nonfatal myocardial infarction, or nonfatal stroke) has occurred 
less frequently with canagliflozin compared with placebo (26.9 
versus 31.5/1000 patient-years; p=0.02). There was no statistical 
evidence of heterogeneity between the primary and secondary 
prevention cohorts. Renal outcomes were reduced by 40% and 
heart failure hospitalization was reduced by 33% in patients 
treated with canagliflozin (120, 121). In the DECLARE-TIMI 58 tri-
al, 17,160 T2DM patients, including 6,974 with atherosclerotic 
cardiovascular disease, were assigned for 10 mg dapagliflozin 
or placebo in 1:1 ratio and were followed for a median of 4.2 

years. Dapagliflozin decreased the composite of cardiovascular 
death or hospitalizations for heart failure in those with estab-
lished atherosclerotic cardiovascular disease (ASCVD) and those 
with only multiple risk factors (122). When patients with previ-
ous myocardial infarction (n= 3,584) were specifically looked 
at, adverse cardiovascular events were 16% less in the dapagli-
flozin arm (123). According to these studies, SGLT2Is should be 
prescribed aiming at cardiovascular protection in patients with 
T2DM and ASCVD (124). In addition, the renal outcome results of 
the DECLARE-TIMI 58 have supported the favorable renoprotec-
tive effects of SGLT2Is. 47.6% of the patients in this trial had GFR 
>90, 45.1% had GFR between 60 and 90, whereas only 7.4% of 
the patients had GFR <60 mL/min/1.73m2. More than two-thirds 
of the recruited patients had normal urine albumin excretion.

In the CREDENCE trial, T2DM patients suffering chronic kidney 
disease (CKD) and albuminuria (4,400 patients) were randomly 
assigned to receive canagliflozin 100 mg daily or placebo in 1:1 
ratio. All the patients had an eGFR of 30 to <90 mL/minute/1.73 
m2 and albuminuria (urine albumin/creatinine ratio >300 to 
5,000 mg/g) that were receiving RAS blockers. The primary out-
come was a composite of ESRD (dialysis, transplantation, or a 
sustained eGFR of <15 mL/ min / 1.73 m2), a doubling of the se-
rum creatinine, or death from renal or cardiovascular causes. 
The projected duration of the study was 5.5 years. Investigators 
of this study prematurely terminated the trial after a planned 
interim analysis on the recommendation of the data and safety 
monitoring committee. This analysis has shown a highly signif-
icant reduction of the primary composite endpoint by 34% in 
patients treated with canagliflozin after 2.6 years of treatment. 
Patients in the canagliflozin group also had a lower risk of ESRD, 
hospitalization for heart failure (HF), and the composite of CV 
death, myocardial infarction, or stroke. These results indicate 
that canagliflozin is an effective treatment for renal and cardio-
vascular protection in T2DM patients suffering CKD (125). The 
observed benefits were obtained mainly in patients whose bas-
al eGFR was between 30 and <60 mL/min/1.73 m2. The hypogly-
cemic effect of SGLT2Is is almost lost when eGFR is lower than 
45 mL/min/1.73 m2. In addition, these findings were observed 
despite very modest differences in blood sugar, weight, and 
blood pressure between the placebo and the active treatment 
groups. This suggests that the benefits obtained are indepen-
dent of glycemic control and are likely related to the reduction 
in single nephron hyperfiltration mediated by NHE3 inhibition.

Contrary to CREDENCE trial patients where all patients were 
prescribed RAS blockers, only 81.3% of DECLARE study patients 
were on RAS blockers. The prespecified composite cardio-renal 
endpoints (≥40% decrease in estimated glomerular filtration rate 
to <60 mL per minute per 1.73 m2 of body-surface area, new end-
stage renal disease, or death from renal or cardiovascular caus-
es) were significantly reduced by 24% in the dapagliflozin group, 
whereas the prespecified composite renal endpoints decreased 
by 47%, and the chance to develop ESRD decreased by 56% in 
the dapagliflozin group. The significant impact of dapagliflozin 

Figure 10. Activation of SGLT2 in diabetic patients leads to overactivity of P21, 
the natural inhibitor of Cyklin-dependent kinase 2. This kinase enzyme inhibits 
cell senescence. By inducing P21, diabetic patients suffer increased proximal 
tubular epithelium senescence. Through inhibition of SGLT2, SGLT2Is protect 
proximal tubular epithelial cells against increased senescence. 
SGLT: sodium glucose transporter; PCT: proximal convoluted tubule
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was encountered in patients having baseline GFR >90, in cases 
with GFR between 60 and 90, in normo-albuminuric patients, in 
patients with microalbuminuria, and in those with overt protein-
uria. These favorable effects were only observed in patients al-
ready maintained on either ACE inhibitors or ARBs (12).

Role of Free Oxygen Radicals Scavengers
Many preclinical studies have underlined the role of ROS in 
the pathogenesis of diabetic complications. However, the less 
favorable outcomes of different antioxidants to prohibit the 
development or progression of diabetic complications in large 
clinical trials have dampened the enthusiasm for the use of an-
tioxidant agents in diabetes (126). Clinical studies using vitamin 
A, C, and E as antioxidant agents in pre-diabetic and T2DM pa-
tients were disappointing.

Recommendations of Diabetes Associations
In October 2018, the European Association for the Study of Di-
abetes (EASD) and the American Diabetes Association (ADA) is-
sued an updated consensus on management of T2DM patients. 
In this consensus, patients with clinical CV disease should re-
ceive one of SGLT2Is or GLP-1RAs, whereas in patients with CKD 
or clinical HF and ASCVD, SGLT2Is should be considered (127). 
The choice of diabetes therapies as recommended by the Amer-
ican Association of Clinical Endocrinologists (AACE) and Amer-
ican College of Endocrinology (ACE) must be individualized 
on the basis of many attributes including the risk reduction in 
heart and kidney disease (128).

Novel Markers of Diabetic Complications
Mannose-binding lectin (MBL), a recognized protein of the in-
nate immune system is independently associated with HbA1c in 
diabetic patients (129). MBL is a possible independent predictor 
of DR, DN and other vascular complications in type 1 and type 2 
diabetes (130-134).

In 297 newly diagnosed T2DM patients, serum fibrinogen was a 
strong predictor for DN (135). Serum adiponectin was proved as 
a strong predictor of DN in both type 1 and type 2 diabetic pa-
tients according to a recent meta-analysis of 13 studies of more 
than 5,000 cases (136). 

CONCLUSION
SGLT2Is, GLP1RAs, and DPP4Is represent a new hope in prevent-
ing or slowing down the rate of progression of DN. Their favorable 
effect on body weight and the decreased likelihood of hypoglyce-
mia promote their use even in T1DM. The rapidly accumulating 
evidence of the significant renal and cardiac protective effects 
of SGLT2Is and GLP-1RAs has enforced the ADA, EASD, ACE, and 
AACE to recommend their use as second-line treatment in T2DM 
patients with cardiovascular disease or CKD (127, 128, 137). How-
ever, all the available evidence has supported the impact of these 
agents in secondary prevention. The lack of similar significant 
evidence on the impact of these agents in primary prevention is 
likely due to the relatively short duration of the available trials. 

United Kingdom Prospective diabetes study (UKPDS) is the most 
famous primary prevention trial in T2DM patients. The results of 
this study failed to show any significant impact of the tight sugar 
control on the cardiovascular endpoints at the end of the study. 
Ten more years after the end of the study were needed to get 
significant differences in acute myocardial infarction and over-
all mortality (138). The planned duration of the CREDENCE trial 
was 5.5 years. This study was then prematurely terminated when 
a significant difference in the composite endpoints between the 
two arms in the whole group became evident (125). This short-
ened duration could explain why patients with eGFR ≥60 mL/
min/1.73 m2 and patients with UAE ≤1,000 mg/gm creatinine 
failed to get the expected benefit. The most recent DECLARE-TIMI 
58 study has supported this view. This last study continued for 4.2 
years and showed the significant impact of dapagliflozin in pa-
tients having baseline GFR >90, those with GFR between 60 and 
90, and even in normoalbuminuric patients (12). The pronounced 
effects in patients of DECLARE study are likely due to the relative-
ly longer duration of follow-up. Based on these facts, it seems 
that more lengthy primary preventive studies are needed. Such 
studies should recruit newly diagnosed T2DM patients who have 
laboratory markers suggesting the likelihood to develop DN. The 
very high cost is main obstacle for these studies as the duration 
needed to get enough endpoints for adequate statistical analy-
sis is very long. Given the documented safety and superiority 
of SGLT2Is, GLP1RAs, and DPP4Is, we suggest a more reproduc-
ible approach to manage T2DM patients. Routine tests for nov-
el predictors screening for the likelihood to develop DN should 
be done in all T1DM and T2DM patients. Serum MBL, fibrinogen, 
or adiponectin can help to select patients prone to develop DN. 
These patients should be prescribed SGLT2Is aiming at preven-
tion instead of waiting until signs of renal involvement develop. 
This primary prevention approach will supposedly abort the de-
velopment of DN instead of the current secondary prevention ap-
proach that only postpones ESRD for few months or years. The 
primary prevention should be extended to involve T1DM patients 
but with great attention to insulin treatment in order to avoid 
diabetic ketoacidosis. Although this preventive approach caries 
some risk especially in T1DM, the benefits obtained will definitely 
outweigh the drawbacks. Development of ESRD in diabetic pa-
tients is a real nightmare for nephrologists. Morbidity and mortal-
ity are significantly higher among diabetic patients starting dialy-
sis compared with non-diabetic patients (139, 140). In one series 
none of the diabetic patients survived for five years on dialysis in 
comparison to over 50% in non-diabetic patients (140).
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